and sizes thereof. Moreover, the semiconductor image sensing element and the semiconductor image sensing device according to the present invention also achieve the effect of allowing the lower-cost fabrication thereof since the fabrication processes therefor are simple and easy.

What is claimed is:

- 1. A semiconductor image sensing element comprising:
- a semiconductor element having an image sensing area, a plurality of electrode portions, and a plurality of microlenses provided on the image sensing area; and
- an optical member having a configuration covering at least the image sensing area and bonded over the micro-lenses via a transparent bonding member, wherein
- a light shielding portion is provided on a side surface region of the optical member.
- 2. The semiconductor image sensing element of claim 1, wherein the light shielding portion is a light shielding film or a light shielding pattern.
 - 3. A semiconductor image sensing element comprising:
 - a semiconductor element having an image sensing area, a plurality of electrode portions, and a plurality of microlenses provided on the image sensing area;
 - an optical member having a configuration covering at least the image sensing area and bonded over the micro-lenses via a transparent bonding member; and
 - a light shielding member formed on an exposed region of the transparent bonding member and on a side surface region of the optical member to have openings for exposing the electrode portions.
- **4**. The semiconductor image sensing element of claim 3, wherein the light shielding member is made of a resin which cuts off at least a visible light beam.
- **5**. The semiconductor image sensing element of claim 3, wherein the side surface region of the optical member is configured to tilt with respect to a light receiving surface.
- **6.** The semiconductor image sensing element of claim 3, wherein the side surface region of the optical member is formed into a rough surface.
- 7. The semiconductor image sensing element of claim 3, wherein a material of the optical member is made of Pyrex glass, Terex glass, quartz, an acrylic resin, or an epoxy resin.
- **8**. The semiconductor image sensing element of claim 3, wherein bumps are formed on respective surfaces of the electrode portions of the semiconductor element.
- **9**. A method for fabricating a semiconductor image sensing element, the method comprising the steps of:
 - preparing a semiconductor wafer on which semiconductor elements each having an image sensing area, a plurality of electrode portions, and a plurality of micro-lenses provided on the image sensing area are arranged as an array.
 - forming at least one of a light shielding film and a light shielding pattern on a side surface of each of optical members having a configuration covering at least the image sensing area;
 - forming a transparent bonding member on the image sensing area of each of the individual semiconductor elements on the semiconductor wafer;

- aligning the optical members with respect to the individual image sensing areas and bonding the optical members to the individual semiconductor elements by using the transparent bonding members; and
- cutting the semiconductor wafer into the separate individual semiconductor elements.
- 10. A method for fabricating a semiconductor image sensing element, the method comprising the steps of:
 - preparing a semiconductor wafer on which semiconductor elements each having an image sensing area, a plurality of electrode portions, and a plurality of micro-lenses provided on the image sensing area are arranged as an array;
 - forming optical members each having a configuration covering at least the image sensing area;
 - forming a transparent bonding member on the image sensing area of each of the individual semiconductor elements on the semiconductor wafer;
 - aligning the optical members with respect to the individual image sensing areas and bonding the optical members to the individual semiconductor elements by using the transparent bonding members;
 - forming a light shielding member on an exposed region of the transparent bonding member over each of the semiconductor elements and on a side surface region of each of the optical members to form openings for exposing the electrode portions; and
 - cutting the semiconductor wafer into the separate individual semiconductor elements.
 - 11. The method of claim 9, further comprising the step of:
 - forming bumps on the electrode portions of each of the semiconductor elements.
- 12. The method of claim 10, further comprising the step of:
 - forming bumps on the electrode portions of each of the semiconductor elements.
 - 13. A semiconductor image sensing device comprising:
 - a semiconductor image sensing element;
 - a package having a mounting portion to which the semiconductor image sensing element is fixed and metal thin wire connection portions;
 - a fastening member for fastening the semiconductor image sensing element to the mounting portion of the package;
 - metal thin wires for providing connection between the electrode portions of the semiconductor image sensing element and the metal thin wire connection portions; and
 - a burying resin for burying the metal thin wires therein and protecting the metal thin wires, wherein
 - the semiconductor image sensing element is made of the semiconductor image sensing element of claim 3.
- **14**. The semiconductor image sensing device of claim 13, wherein an inner wall of the package is formed into a rough surface configuration.